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Fractured/faulted porous media: multiple scales (figures from J. R. de
Dreuzy, Geosciences Rennes and Inria)
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Fractured/faulted poro-mechanical models: risks of fault reactivation in
CO2 storage

Rutqvist et al 2010
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Induced seismicity

Simulations Sismo-hydro-mécaniques pour la sismicité induite 
par les fluides

• Enjeux applicatifs
• Meilleure maîtrise des risques de sismicité induite 

par l’exploitation du sous-sol 

• Difficultés
• Très forts contrastes d’échelles de temps entre les 

phases quasi-statique (années) et dynamique (ms) 

• Programme
• Etat de l’art 
• Identification des verrous numériques
• Définition d’un programme de recherche

• Collaborations
• J.P. Ampuero et F. Cappa de Géoazur

CHAPITRE 1 ͗��d�d����>͛�Zd�^hZ�>�^�Z�>�d/KE^��EdZ��>��^/^D/�/d�͕�>A DEFORMATION 
ASISMIQUE ET LA PRESENCE DE FLUIDES DANS LES FAILLES GEOLOGIQUES 
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Figure 1.5. 1RPEUH� DQQXHO� G¶pYpQHPHQWV� GH� PDJQLWXGH� VXSpULHXUH� j� �� GDQV� OD� UpJLRQ�
centrale des Etats-Unis entre 1973 et 2018. Les événements représentés en rouge ont été détectés 
après 2008. 

 
Figure 1.6. (page suivante) Lien entre sismicité et injection de fluide dans la région centrale 
des Etats-8QLV�� G¶DSUqV� 3ROO\HD� HW� DO�� �������� 1RPEUH� DQQXHO� G¶pYpQHPHQWV� GH� PDJQLWXGH�
VXSpULHXUH�j������HQ�JULV���YROXPH�LQMHFWp�G¶HDX�VDOpH��HQ�EOHX��HW�SURIRQGHXU�Poyenne des événements 
�FHUFOHV��SRXU� OHV� UpJLRQV�G¶$OIDID��GH�/LQFROQ��G¶2NODKRPD�� VLWXpHV�HQ�2NODKRPD��86$�� HW� SRXU� OH�
bassin de Raton, situé au sud du Colorado et au nord du Nouveau-Mexique, USA.  

 

Sismicité de magnitude > 3 au centre des USA
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Typical meshes in geosciences

Corner Point Geometries (CPG)

Not adapted to Finite Element Methods (FEM) typically used in Mechanics

Need for discretizations of contact mechanics adapted to polyhedral meshes
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Outline

1. Contact-Mechanical model

2. Discretization on polyhedral meshes

3. Numerical validation
Contact-mechanics
Poromechanics

4. Fluid induced fault reactivation
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Static contact-mechanical model

The matrix and fracture pressures pm and pf are fixed

Isotropic linear poroelastic model in the matrix domain Ω \ Γ

pm

u
pf

Ω

−

Γ

+

n−
n+

Mixed-dimensional geometry and unknowns


−div

(
σT (u, pm)

)
= f ,

σT (u, pm) = σ(u) − b pm I,

σ(u) = 2𝜇 ε(u) + 𝜆 divu I.
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Fracture mechanical model on the fracture network Γ

Jumps : ⟦u⟧ = u+ − u− , ⟦u⟧n = ⟦u⟧ · n+, ⟦u⟧𝜏 = ⟦u⟧ − ⟦u⟧nn+,

Surface Tractions: T± = σT (u, pm)±n± + pf n
±

Law of Action and Reaction:

T+ + T− = 0

Non penetration conditions:

T+
n ≤ 0, ⟦u⟧n ≤ 0, ⟦u⟧n T+

n = 0

Coulomb friction conditions:

|T+
𝜏 | ≤ −F T+

n ,

T+
𝜏 (u) · ⟦u⟧𝜏 − F T+

n (u) |⟦u⟧𝜏 | = 0

Roland Masson P1-bubble VEM method
NEMESIS Kick-off workshopMontpellier, june 19th-21st 2024
8 / 43



Mixed variational inequality

Lagrange multiplier: 𝝀 = −T+

Dual cone of admissible Lagrange multipliers: given 𝝀 = (𝜆n, 𝝀𝝉)

Cf (𝜆n) =
{
𝝁 ∈ (H−1/2 (Γ))d : 𝜇n ≥ 0, |𝝁𝝉 | ≤ F𝜆n (in a weak sense)

}
.

Mixed variational inequality: u ∈ H1
0 (Ω\Γ)

d , 𝝀 ∈ Cf (𝜆n) such that∫
Ω

(
σ(u) : ε(v) − b pmdiv(v)

)
+ ⟨𝝀, ⟦v⟧⟩Γ +

∫
Γ

pf ⟦v⟧n =

∫
Ω

f · v,

⟨𝝁 − 𝝀, ⟦u⟧⟩Γ ≤ 0,

for all v ∈ H1
0 (Ω\Γ)

d , 𝝁 ∈ Cf (𝜆n).
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Polyhedral nodal discretization of the displacement field u

Virtual Element Method (VEM) [Beirao Da Veiga et al 2013]

Fully discrete approach (nodal MFD, CDO, DDR)
local reconstruction operators from the space of discrete unknowns onto polynomial
spaces.

Nodal displacement unknowns:

VEM

u

Γ
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Extension to contact-mechanics: mixed formulation

Mixed formulation with nodal Lagrange multipliers [Wriggers et al 2016]

Mixed formulation with face-wise constant Lagrange multipliers 𝝀 = −T+

deal with fracture networks including intersections
face-wise contact conditions
preserve the contact dissipative properties

multiplicateur

λ = −T+

σ
λσ

MD =
{
𝝀D ∈ L2 (Γ)d : 𝝀D (x) = 𝝀𝜎 ∀𝜎 ∈ FΓ,∀ x ∈ 𝜎

}
.

For 𝝀D ∈ MD , we define the discrete dual cone of admissible Lagrange multipliers:

CD
(
𝜆D,n

)
=

{
𝝁D =

(
𝜇D,n, 𝝁D,𝝉

)
∈ MD : 𝜇D,n ≥ 0, |𝝁D,𝝉 | ≤ F𝜆D,n

}
.
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Stabilization of the Lagrange multiplier

A stabilization is required to avoid spurious Lagrange multiplier modes

Enrichment of the displacement space
P1-bubble FEM [Renard et al 2003]
In this work: polytopal bubble stabilisation

VEM bulle

uKs nodal
uKσ bubble

σ

s
K

uKσ

uKs

Vector space of discrete displacement unknowns:

UD =

{
vD =

(
(vKs )Ks∈Ms ,s∈V , (vK𝜎)𝜎∈F+

Γ,K
, K ∈M

)
: vKs ∈ Rd , vK𝜎 ∈ Rd

}
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Interpolation operator

ID : C0 (Ω \ Γ)d → UD


(IDu)Ks = u |K (xs ),

(IDu)K𝜎 =
1

|𝜎 |

∫
𝜎
(𝛾K𝜎u − ΠK𝜎 (IDu)). !

u(x)

⊓!" (##$)

sS’

u(xs)

u(xs’)

𝛾K𝜎 is the trace operator on 𝜎 from the K side

ΠK𝜎 is the face linear reconstruction operator depending only on the nodal degrees
of freedom
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Reconstruction operators

Cell gradient and function reconstruction operators:

∇K : UD → (P 0 (K ))d×d

ΠK : UD → (P1 (K ))d

Fracture face mean displacement jump:

⟦ ⟧𝜎 : UD → P 0 (𝜎)d

Global piecewise reconstruction operators:

(εD (uD )) |K = 1
2 (∇

KuD + t∇KuD )

divD = tr(εD ), σD = 2𝜇 εD + 𝜆 divD I

(ΠDuD ) |K = ΠKuD

(⟦uD⟧D ) |𝜎 = ⟦uD⟧𝜎
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Discrete mixed variational formulation

Find (uD , 𝝀D ) ∈ U0
D × CD (𝜆D,n), such that:

∫
Ω

σD (uD ) : εD (vD ) + S𝜇,𝜆,D (uD , vD ) −
∫
Ω

b pm divDvD

+
∫
Γ

pf ⟦vD⟧D,n +
∫
Γ

𝝀D · ⟦vD⟧D =
∑︁

K ∈M

1

|K |

∫
K
f ·

∫
K
ΠDvD ,

∫
Γ

(𝜇D − 𝜆D ) · ⟦uD⟧D ≤ 0,

for all (vD , 𝝁D ) ∈ U0
D × CD (𝜆D,n).

The variational inequality can be reformulated by local to each fracture face equations:
𝜆𝜎,n =

[
𝜆𝜎,n + 𝛽𝜎,n⟦uD⟧𝜎,n

]
R+

𝜆𝜎,𝝉 =

[
𝜆𝜎,𝝉 + 𝛽𝜎,𝝉⟦uD⟧𝜎,𝝉

]
F𝜆𝜎,n

with [x]R+ = max{0, x} and [x]𝛼 =

{
x if |x| ≤ 𝛼,

𝛼
x

|x| otherwise, 𝛽D,n > 0, 𝛽D,𝝉 > 0.
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Jump reconstruction operator on a face 𝜎: ⟦ ⟧𝜎

Face mean value reconstruction:

vK𝜎 =
∑︁

s∈V𝜎

𝜔𝜎
s vKs

with the face center of mass x𝜎 =
∑︁

s∈V𝜎

𝜔𝜎
s xs .

Face average displacement jump operator:

⟦ ⟧𝜎 : UD → P 0 (𝜎)d

⟦vD⟧𝜎 = vK𝜎 − vL𝜎 + vK𝜎 .
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Discrete reconstruction operators in K : ∇K

The gradient reconstruction operator:

∇K : UD → (P 0 (K ))d×d

∇K vD =
1

|K |
∑︁

𝜎∈F+
Γ,K

|𝜎 |vK𝜎 ⊗ nK𝜎 + 1

|K |
∑︁

𝜎∈FK
|𝜎 |vK𝜎 ⊗ nK𝜎 .

Figure: Nodal and bubble unknowns in a cell K
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Discrete reconstruction operators in K : ΠK

Linear function reconstruction operator:

ΠK : UD → (P1 (K ))d

ΠK vD (x) = ∇K vD (x − xK ) + vK ,

with

vK =
∑︁

s∈VK

𝜔K
s vKs

and the cell center of mass xK =
∑︁

s∈VK

𝜔K
s xs .
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Stabilisation term (dofi-dofi approach)

S𝜇,𝜆,D is the scaled stabilisation bilinear form defined by:

S𝜇,𝜆,D (uD , vD ) =
∑︁

K ∈M
hd−2K (2𝜇K + 𝜆K )SK (uD , vD ),

with

SK (uD , vD ) =
∑︁

s∈VK

(uKs − ΠKuD (xs )) · (vKs − ΠK vD (xs )) +
∑︁

𝜎∈F+
Γ,K

uK𝜎 · vK𝜎 ,

such that

SK (IDq, vD ) = SK (uD ,IDq) = 0

for all q ∈ P1 (K ).
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Error estimate for Tresca friction

Let (u, 𝝀) be the exact solution and assume that u ∈ H2 (M) and 𝝀 ∈ H1 (FΓ).
Then the discrete solution (uD , 𝝀D ) satisfies the following error estimate:

∥∇DuD − ∇u∥L2 (Ω\Γ) + ∥𝝀D − 𝝀∥−1/2,Γ <∼ hD ( |𝝀 |H1 (FΓ ) + |u|H2 (M) ).

The proof is mainly based on the discrete inf-sup condition:

sup
vD ∈U0

D

∫
Γ
𝝀D · ⟦vD⟧D
∥vD ∥1,D

≳ ∥𝝀D ∥−1/2,Γ ∀𝝀D ∈ MD .

with ∥vD ∥1,D :=

( ∑︁
K ∈M

(∥∇K vD ∥2L2 (K ) + SK (vD , vD ))
)1/2

.

and the discrete Korn inequality:

∥vD ∥21,D <∼ ∥εD (vD )∥2
L2 (Ω\Γ) +

∑︁
K ∈M

SK (vD , vD ) ∀vD ∈ U0
D .
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Manufactured solution for a frictionless contact mechanical model

Frictionless contact mechanical model:



−divσ(u) = f on Ω\Γ
σ(u) = 2𝜇 ε(u) + 𝜆 divu I on Ω\Γ
T+ + T− = 0 on Γ

Tn ≤ 0, ⟦u⟧n ≤ 0, ⟦u⟧n Tn = 0 on Γ

T𝜏 = 0 on Γ.

Analytical solution:

u(x , y , z ) =



©«
g (x , y )p (z )

p (z )
x2p (z )

ª®¬ if z ≥ 0,

©«
h(x )p+ (z )

h(x )
(
p+ (z )

)′
−

∫x
0 h(𝜉 )d𝜉

(
p+ (z )

)′ ª®¬ if z < 0, x < 0,

©«
h(x )p− (z )

h(x ) (p− (z ) ) ′
−

∫x
0 h(𝜉 )d𝜉 (p− (z ) ) ′

ª®¬ if z < 0, x ≥ 0,

with



g (x , y ) = − sin( 𝜋x2 ) cos( 𝜋y2 )

p (z ) = z2

h(x ) = cos( 𝜋x2 )

p+ (z ) = z4

p− (z ) = 2z4
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1st and 2nd order

(a)

2nd order

(b)

1st and 2nd order

(c)

Figure: Error and convergence rates obtained with the VEM P1-bubble method: Tetrahedral
mesh (a), cartesian mesh (b), polytopal mesh (c).
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Single crack under compression

X

Y

Z♦: ux = 0, ■: uy = 0

| ⟦ū⟧𝜏 (𝜏) | =
4(1 − 𝜈)

E
(�̄� sin𝜓(cos𝜓 − F sin𝜓))

√︃
ℓ2 − (ℓ2 − 𝜏2),

𝜆n (𝜏) = �̄� sin2 𝜓, 0 ≤ 𝜏 ≤ 2ℓ
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Single crack under compression
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Coupling with a mixed-dimensional single phase Darcy flow



𝜕t𝜙m + divVm = hm on (0,T ) ×Ω\Γ,

Vm = −Km
𝜂 ∇pm on (0,T ) ×Ω\Γ,

𝜕tdf + div𝜏 Vf − ⟦Vm⟧n = hf on (0,T ) × Γ,

Vf =
Cf (df )

𝜂 ∇𝜏pf , on (0,T ) × Γ,

V±
m · n± = Tf (df ) (𝛾±pm − pf ) on (0,T ) × Γ,

pm

u
pf

Ω

−

Γ

+

n−
n+

with the following coupling laws{
𝜕t𝜙m = b div (𝜕tu) + 1

M 𝜕tpm on (0,T ) ×Ω\Γ,
df = dcf − ⟦u⟧n on (0,T ) × Γ,
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Hybrid Finite Volume (HFV) discretisation for the Darcy flow model
[Brenner et al 2016]

Figure: Pressure unknowns for the HFV scheme with discontinuous pressure
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Discrete energy estimate

Any solution
(
pnD , unD , 𝝀n

D
)
)
∈ X 0

D ×U0
D × CD (𝜆nD,n

) for n = 1, · · · ,N of the fully

coupled scheme satisfies the following discrete energy estimates:

𝛿nt

∫
Ω

1

2

(
σD (uD ) : εD (uD ) + S𝜇,𝜆,D (uD , uD ) + 1

M
|ΠDm

pDm
|2
)
+

∫
Γ

F𝜆nD,n |⟦𝛿
n
t uD⟧D,𝝉 |

+
∫
Ω

Km

𝜂
∇Dm

pnDm
· ∇Dm

pnDm
+

∫
Γ

Cn−1
f ,D
𝜂

|∇Df
pnDf

|2 +
∑︁

𝔞∈{+,−}

∫
Γ

Λn−1
f ,D (⟦pnD⟧𝔞D )2

≤
∫
Ω

hmΠDm
pnDm

+
∫
Γ

hf ∇Df
pnDf

+
∑︁

K ∈M

∫
K
fnK · ΠD𝛿nt uD .

Thanks to the dissipative property of the contact term:∫
Γ

𝝀nD · ⟦𝛿nt uD⟧D ≥
∫
Γ

F𝜆nD,n |⟦𝛿
n
t uD⟧D,𝝉 | ≥ 0.
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2D DFM poromechanical test case

Anisotropic permeability tensor:

Km = 10−15
(
ex ⊗ ex + 1

2
ey ⊗ ey

)
Fracture aperture in contact state:

dcf (x) = 10−4
√︁
arctan(aDi (x) )√︁
arctan(aℓi )

, i ∈ {1, . . . , 6}

F = 0.5, b = 0.5, E = 10 GPa, 𝜈 = 0.2

No analytical solution available

⇒ Compute reference solution on fine mesh

[Acknowledgement: E. Keilegavlen (Bergen)]

Initial conditions

Initial pressures p0m = p0
f
= 105 Pa

Boundary conditions

Mechanics

Top boundary:

u(t , x) =
{t [0.005m, −0.002m] 4t/T if t ≤ T/4
t [0.005m, −0.002m] otherwise

Bottom boundary: u(t , x) ≡ 0

Left and right boundaries: σT (t , x)n(x) ≡ 0

Flow

Left boundary: pm (t , x) ≡ p0m = 105 Pa

All other boundaries: impervious
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Matrix over pressures

End of Stage 1 at t = T
4

End of Stage 2 at t = T
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Contact state along the fractures

−Tn = −(σ(u) · n) · n − (1 − b)pf and |T𝜏 | ≤ −F Tn

End of Stage 1 at t = T
4

End of Stage 2 at t = T
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0 500 1000 1500 2000 0 500 1000 1500 2000

Figure: Mean aperture and mean pressure in fractures as a function of time.
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1.5th order

Figure: Relative L2 error between the current and reference solution
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orders 1 and 0.5

T
+ −

T
−

2

orders 1 and 0.5 orders 1 and 0.5

1.5th order

⟦u
⟧

1.5th order 1.5th order

Figure: Relative L2 error, as a function of the size of the largest fracture face, between the
current and reference solutions in terms of (T+ − T− ) /2 (top) and ⟦u⟧ (bottom) along fractures
1,2 and 3 from left to right: Mixed P1-bubble VEM - P0 vs Nitsche P1 FEM.
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3D DFM poromechanical test case

Isotropic permeability tensor:

Km = 10−14 I (m2 )

Fracture aperture in contact state:

dcf (x) = 10−3 m

F = 0.5, b = 0.5, E = 10 GPa, 𝜈 = 0.2

Initial conditions

Initial pressures p0m = p0
f
= 105 Pa

Boundary conditions

Mechanics

Top boundary:

u(t , x) =
{t [0.005m, 0.002m, −0.002m] 2t/T if t ≤ T/2
t [0.005m, 0.002m, −0.002m] otherwise

Bottom boundary: u(t , x) ≡ 0

Lateral boundaries: σT (t , x)n(x) ≡ 0

Flow

Boundary y = 0 and y = 1: pm (t , x) ≡ p0m = 105 Pa

All other boundaries: impervious
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3D DFM poromechanical test case: contact state

t = T/2 t = T
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Figure: The 𝝉2 component of the tangential jump with the 47k cells mesh (left) and the 127k
cells mesh (right), obtained at final time.
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Figure: Total number of semi-smooth Newton iterations for the contact-mechanical model as a
function of time, with both one-sided and two-sided bubbles and for both meshes with 47k cells
(left) and 127k cells (right).
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Fault reactivation by fluid injection

Kreservoir = 10−13 Im2,

Kcaprock = 10−19 Im2,

Kaquifer = 10−15 Im2.
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Fault reactivation by fluid injection
338 F. Cappa, J. Rutqvist / International Journal of Greenhouse Gas Control 5 (2011) 336–346

Fig. 2. (a) Normal and shear stresses resolved on a fault with a given orientation from the remote principal stresses; (b) Mohr diagram of shear stress (!) versus effective
normal stress (" ′

n) showing how the increasing fluid pressure (#P) may activate a well-oriented, cohesionless fault (fault slip).

2004; Rutqvist et al., 2007, 2008, 2010; Cappa et al., 2009). We first
provide a general review of the fundamental coupled hydrome-
chanical processes involved in fault instability. Thereafter, the code
and various approaches for modeling of coupled hydromechanical
processes during fault reactivation are presented and compared
with each other. We will show that the least complex alternative
model is appropriate, and we demonstrate its use for analyzing fault
reactivation and associated permeability during deep underground
CO2 injection. We conclude with a discussion of the current status
of fault-model development, providing conclusions based on the
detailed results presented in this study.

2. Fluid pressure/stress coupling and fault instability

A fault may deform in an irreversible manner (dynamic or pro-
gressive rupture) if the shear stress acting on the fault plane is high
enough to exceed the shear strength of the fault and induces shear
slip (fault reactivation). To estimate the fluid pressures required
for the reactivation of faults in rocks – with interconnected pore
space under an internal fluid pressure – normal stresses acting on
the faults are reduced to effective values according to the effective
stress law of Terzaghi (1923):

" ′
n = "n − P (1)

where" ′
n is effective normal stress,"n is total normal stress and P is

fluid pressure. In failure analysis of a fault with a given orientation,
the most fundamental relationship describing fault slip, consid-
ering hydromechanical interactions, is derived from the effective
stress law (Eq. (1)) and the Coulomb failure criterion (Jaeger and
Cook, 1979), rewritten as:

! = c +$s" ′
n (2)

where ! is the critical shear stress for slip occurrence, c is cohesion,
and $s is the static friction coefficient defined as:

$s = tan(ϕ) (3)

where ϕ is the friction angle.
The shear and normal stress acting on the fault plane (Fig. 2a)

can be calculated from the two-dimensional principal stresses as:

! = "1 − "3

2
sin 2ı (4)

"n = "1 + "3

2
− "1 − "3

2
cos 2ı (5)

where "1 is maximum principal stress, "3 is minimum principal
stress and ı is the angle between the fault plane and the "1 direc-
tion (Fig. 2a). The generalization of this type of stress equations to a
three-dimensional case (i.e. faults that do not strike parallel to the
intermediate principal stress) is not difficult, but the stress trans-
formations required for 3D analyses have been ignored from this
paper for the sake of simplicity.

Eqs. (1) and (2) indicate that increasing fluid pressure may
induce shear slip along the fault (Fig. 2b). To accurately estimate
the potential for reactivation of faults, both appropriated fluid
pressures and stresses need to be constrained. Fault instability is
frequently evaluated in terms of the ratio of shear stress to effec-
tive normal stress (!/" ′

n – called “slip tendency” or “ambient stress
ratio”) acting on the fault plane (Streit and Hillis, 2004). According
to Eq. (2), for a well-established, cohesionless fault (c = 0) (note the
cohesion may be restored by hydrothermal cementation), slip will
be induced once the ambient stress ratio exceeds the coefficient
of static friction. For most rocks, $s ranges from 0.6 to 0.85, based
on laboratory tests (Byerlee, 1978), borehole stress measurements
(Townend and Zoback, 2000), and a range of structural and seismo-
logical observations on active faults in the upper seismogenic crust
(Collettini and Sibson, 2001). Generally, a frictional coefficient of
0.6 is a lower limit value observed for the most hydraulically and
optimally oriented fault zones active in the upper seismogenic crust
(Sibson and Rowland, 2003). However,$s can be lower ($s = 0.4) if
faults contain clay minerals, or gouge (Wibberley and Shimamoto,
2005).

3. Development and implementation of a coupled
hydromechanical fault-permeability model

In this section we present the development and implementa-
tion of a coupled hydromechanical fault-permeability model into
the coupled fluid flow and geomechanical simulator TOUGH–FLAC.
As already described in Section 1, permeability structures of faults
can be very complex, depending on host rock conditions as well
as previous loading history. Faults may be at different stages of
development, having different fault architectures, from a single
shear plane, or sealed structural porosity, to a mature major fault
zone with complex permeability structure, including a core zone
and an adjacent fractured damage zone. Thus, while a single-fault
hydromechanical model cannot cover all types of faults, a general
modeling approach may be developed and modified for specific
fault architectures.

df = dcf − ⟦u⟧n + tan(𝜓) |⟦u − u0⟧𝝉 |
dcf = 10−5 m
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Fault reactivation by fluid injection
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Conclusions and Perspectives

Conclusions
Extension to polytopal framework of face bubble stabilisation for contact-mechanics
Energy stable discretisation of mixed-dimensional poro-mechanical models
Application to the simulation of fluid-induced fault reactivation

Perspectives
Coupling algorithms
Linear solvers

Nitsche’s formulation: see poster of Mohamed Laaziri
Higher order polytopal method

Thermo-Hydro-Mechanics
Two-phase flows
Dynamic friction (seismic slip)
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Thank you for your attention.
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